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 Introduction

Film cooling has been proposed as a means of ther-
mal protection to reduce the scramjet combustor wall
heating loads and the fuel mass required for regenerative
cooling alone. In this concept, some of the regeneratively
heated hydrogen fuel is injected at a supersonic velocity
parallel to the wall through small slots to provide a buffer
layer between the hot engine core flow and the structure.
In addition to thermal protection, film cooling may
improve engine performance by reducing skin friction
and providing thrust in the high Mach number operating
range. A coordinated government and industry study was
conducted (refs. 1 and 2) to define film cooling technol-
ogy for application to scramjet engines and to identify
areas that require further data. The experimental effort
reported herein is an outgrowth of this study.

Some aerothermal problems associated with hyper-
sonic flows are summarized in reference 3. These prob-
lems include determining heat fluxes in the regions of
incident-shock (two-dimensional) and swept-shock
(three-dimensional) interactions with turbulent boundary
layers. An oblique shock incident on a turbulent bound-
ary layer forms a two-dimensional flow field with a sepa-
rate flow region, a “lambda” shock structure (the incident
and separation shock combination), and a reattachment
(reflected) shock (fig. 1(a)). The interaction region
becomes steady state and the extent of the separation
region depends on the shock strength. An oblique shock
that is swept across a turbulent boundary layer forms a
three-dimensional flow field with a lambda shock and
separation region structure as shown in figure 1(b) (from
ref. 4). However, in the swept-shock configuration, the
entire interaction region grows in a quasi-conical manner
from the shock origin (ref. 4). The separated flow region
becomes a spiral vortex that grows with entrained mass
(fig. 1(c)). Results for a swept-shock interaction on an
uncooled flat plate at similar flow conditions are reported
in reference 5. These results show that heat flux and pres-
sure rises begin 2 in. upstream and reach post-shock lev-
els 2 in. downstream relative to inviscid shock location.

Both the two-dimensional and three-dimensional flow
structures are present in a scramjet combustor and are a
major cause of high local heat fluxes. Film cooling is one
method under consideration for reducing these fluxes.
However, the addition of a coolant film in these shock
and boundary-layer interactions further complicates the
understanding of the fluxes.

A joint experimental two-stage program was devel-
oped by Langley Research Center (LaRC) and Calspan-
University at Buffalo Research Center (CUBRC) to
study film cooling for scramjet applications. The tests
were conducted in the Calspan 48-Inch Shock Tunnel.
(See ref. 6 for a detailed description of the test facility.)
The nominal test conditions were Mach 6.4 flow at

, , and
Stage 1 tests (refs. 7 to 9) used helium injected at Mach 3
as the coolant gas and determined some of the fundamen-
tal phenomena that govern supersonic film cooling in a
two-dimensional noncombusting environment. Parame-
ters of the study included coolant delivery pressure, cool-
ant slot height, lip thickness, and incident shock strength.
Results for undisturbed flow were as follows:

1. Coolant pressure matched to the local boundary-layer
edge pressure is most effective.

2. Larger slot heights (0.120 in.) are more effective than
smaller slot heights (0.080 in.).

3. Lip thickness in the range of 0.020 to 0.205 in. has no
net effect on film cooling. Data for the interactions
between the film-cooling layer and the incident shock
show that incident shocks degrade film-cooling effec-
tiveness. However, these data also suggest multiple-
slot film-cooling designs to reestablish the film-
cooling layer downstream of a shock.

The test series reported herein, stage 2, uses hydro-
gen that is injected at Mach 2.7 as the primary coolant
gas, although some tests with helium coolant were con-
ducted at Mach 3. To preclude combustion when the
coolant was hydrogen, the free-stream test medium for

R∞ 7.4 106× /ft= T0 2189°R= p0 2252 psia.=
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all tests was nitrogen. The following effects were
investigated:

1. Coolant mass flow rate with undisturbed flow for both
hydrogen and helium coolants.

2. Incident-shock interactions for shock turning angles
of 2.5°, 5.0°, and 7.5° with hydrogen coolant at a
delivery pressure matched to free-stream pressure.

3. Incident-shock interactions for shock turning angles
of 2.5° and 5.0° with hydrogen coolant at a delivery
pressure matched to free-stream pressure and with a
reduced local Reynolds number.

4. Swept-shock interactions for a shock turning angle of
5.0° with no coolant and with hydrogen coolant at
delivery pressures matched to both the preshock and
postshock pressures. The test matrix is shown in
table I.

Symbols

specific heat, Btu/lbm-°R
acceleration due to gravity,
32.2 lbm-ft/lbf-sec2

J mechanical equivalent of heat, 778.16 ft-lbf/Btu

M Mach number

m mass flow rate, lbm/sec-in2

p static pressure, psia

total pressure, psia

q heat flux, Btu/ft2-sec

flat-plate heat flux, Btu/ft2-sec

Fay and Riddell heat transfer to 3-in-diameter
cylinder, Btu/ft2-sec

pos position

R Reynolds number at coolant slot

s slot height, in.

T temperature,°R
total temperature,°R

t lip thickness, in.

V velocity, ft/sec

x streamwise distance from coolant slot, in.

y transverse distance from plate centerline, in.

γ ratio of specific heats

δ boundary-layer thickness, in.

µ viscosity, lbm/ft-sec

ν kinematic viscosity, ft2/sec

cv

gc

p0

q0

Q0

T0

Subscripts:

c coolant

e boundary-layer edge

free stream

Apparatus and Tests

Facility

The tests were conducted in the Calspan 48-Inch
Shock Tunnel at a nominal free-stream Mach number
of 6.4 with , , and

 psia (table II). Nitrogen was used as the free-
stream test gas to preclude combustion when hydrogen
coolant gas was used. The facility and its operation and
test envelope are described in reference 6. Tunnel runs
had steady flow times on the order of 5 msec.

Model

The model consisted of a sharp leading-edge flat
plate, a coolant distribution system with a rearward-
facing coolant injection slot, instrumented downstream
plates, an adjustable horizontal oblique-shock generator,
and a vertical oblique-shock generator.

Configurations with 15-in-long and 28-in-long
sharp-leading-edge instrumented foreplates combined
with the coolant distribution section provided total
leading-edge-to-coolant-slot foreplate lengths of 19 in.
and 32 in., respectively. This assembly was sting
mounted in the facility at zero angle of attack. Free-
stream Reynolds numbers at the coolant slot locations
based on length from the leading edge were
and , respectively. These Reynolds numbers
provide naturally transitioned turbulent boundary layers
at the coolant injection location. Analyses from the
Boundary Layer Integral Matrix Procedure (BLIMP code
version K, ref. 10), with a momentum integral thickness
Reynolds number of 700, predicted boundary-layer
thicknessesδ of 0.34 in. and 0.44 in., at the coolant slot
locations.

The two-dimensional film cooling nozzles and the
related coolant distribution system (fig. 2), were
designed in stage 1 for uniform injection of helium at
Mach 3 by using a sequential method-of-characteristics
and Navier-Stokes analysis. The sequence included
inviscid contour prediction, viscous analysis, contour
modification for displacement thickness, and final vis-
cous analysis. The computed helium flow was laminar
with an exit boundary-layer thickness of 0.024 in. Two
nozzle sets with slot heightss of 0.080 in. and 0.120 in.
and a lip thicknesst of 0.020 in. were fabricated. The

∞
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0.020-in. lip was considered a lower practical limit for an
internally cooled structure. Forty nozzles spanned the
18-in. width of the model. The nozzles were fed, in
groups of eight, from five individual high-pressure stor-
age bottles through fast-acting valves and primary meter-
ing orifices. Coolant gas from the storage bottles entered
the coolant distribution system and was channeled to the
individual nozzles through equal-length flow paths and
secondary metering orifices. (See fig. 2(c).) Based on
stage 1 results, which show better cooling effectiveness
for the larger slot height, stage 2 utilized only the
0.120-in. cooling nozzles. Adapting the nozzles for use
with hydrogen coolant required the replacement of pri-
mary metering orifices in each circuit with smaller ori-
fices to account for the difference in properties of helium
and hydrogen. Repeating the original design analysis
sequence for hydrogen indicated that the nozzles would
still operate satisfactorily (the gas properties used in the
analysis are shown in table III). Schlieren photographs
(not shown) of the nozzle discharge, taken through an
optical window installed in place of the instrumented
plate, suggest weak internozzle wake structures and rela-
tively uniform coolant flow. The model assembly was
modified for stage 2 to incorporate O-ring seals at mating
points to reduce coolant gas leakage. Coolant leakage
from the lap joint (fig. 2(c)) was not totally eliminated
but did not appear to be significant. The range of coolant
delivery pressure (measured at the coolant nozzle exit) as
a function of the boundary-layer edge pressure at the slot
location  was 0.5 to 2.0 (with the associated mass
flow rates of 0.163 to 1.580 lbm/sec-in2). Nominal cool-
ant flow conditions (table II) were  and

 for hydrogen coolant and  and
 for helium coolant.

The plates downstream of the coolant nozzles were
instrumented with streamwise rows of thin-film ther-
mometers and pressure gauges near the centerline
(fig. 3). The thin-film thermometers, developed by
Calspan, were platinum resistance thermometers on
Corning Pyrex substrates. The thermometers were
spaced 0.1 to 1.3-in. apart, with the finer spacing in the
slot and shock interaction regions. Accuracy of these
thin-film thermometers, including the uncertainties asso-
ciated with the gauge calibration and data recording
equipment, is estimated to be±5 percent for the heating
levels encountered in these tests.

Calspan-designed lead zirconium titanate piezo-
electric pressure transducers capable of following fluctu-
ations of up to 15 kHz were used to obtain mean pressure
data. The frequency pressure gauges were spaced from
0.6 to 1.3 in. apart in two rows offset from the centerline
(fig. 3). The system for recording the data output from
the temperature and pressure instrumentation, filtering

pc pe⁄

Mc 2.7=
T0 c, 536°R= Mc 3.0=
T0 c, 536°R=

the data, and processing the data is described in
reference 6.

An adjustable horizontal shock generator system
(fig. 4) produced oblique shocks that were made incident
on the instrumented plate 2 in. downstream of the coolant
slot (based on inviscid theory). Flow turning angles of
2.5°, 5.0°, and 7.5°, with associated shock angles of
10.64°, 12.56°, and 14.70°, were investigated.

A 17-in. by 8-in. vertical shock generator was
mounted on the foreplate to produce a 5° flow turning
angle swept shock across the instrumented plates (fig. 5).
The shock generator was translated in they-direction to
move the shock with respect to the lines of instrumenta-
tion. Four shock-nozzley-direction crossing locations
(based on inviscid theory) were tested, and the corre-
sponding downstream location (x-direction) of the shock-
instrumentation intersections are shown. The two lines of
pressure instrumentation are offset from the centerline
(fig. 3) and result in different shock crossing locations
than the thin-film thermometers.

Test Procedures

Coolant injection system performance was deter-
mined in the test facility at the test static pressure (1 psia)
without tunnel flow. Nozzle mass flow rates were cali-
brated against reservoir supply pressures. Pressure mea-
surements that were made upstream of the primary
orifice and at the nozzle plenum (downstream of the sec-
ondary orifice), throat, and exit planes during initial noz-
zle calibration runs indicated that the flow within the
distribution system was uniform. The ratio of coolant
delivery pressure to the boundary-layer edge pressure
was from 0.5 to 2.0. Mass flow rates (table II) were
determined from the numerical slope of the reservoir
pressure versus time history over a selected period of
constant flow. This method of calculating mass flow
rates provided more accurate results than the method that
uses the initial-to-find pressure slope (stage 1). The flow
area includes lip thickness and sidewall thickness. Cool-
ant flow conditions and mass flow rates are shown in
table II. Coolant injection nozzles were sealed with alu-
minum tape for tests with no coolant flow to prevent
backflow into the coolant distribution system.

The film-cooling tests began by initiating coolant
flow in advance of tunnel flow to establish steady-state
conditions in the coolant nozzles. Tunnel flow was then
initiated with approximately 5 msec of steady-state flow.
Thin-film thermometer and pressure data were recorded
on a data acquisition system and were reduced as
described in reference 6. Data reduction averaged the
instrumentation output over a selected 2-msec interval of
the 5-msec steady-state flow time. Heat fluxes were
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determined from the thin-film thermometer data by using
a semi-infinite slab approximation (ref. 6).

Reference Condition

Flat-plate (no rearward-facing step) reference condi-
tions for heat-flux and pressure distributions over the full
length of the model were established in stage 1 and are
shown in figure 6. These data represent two runs, one
with dense instrumentation on the foreplate and the other
with dense instrumentation in the test region. A polyno-
mial fit of the heat-flux distribution (ref. 8 and fig. 6(a))
results in the following second-order curve:

(1)

This heat-flux distribution is used as the reference condi-
tion for undisturbed flow cooling effectiveness results.
The pressure distribution (fig. 6(b)) in the test region is
uniform.

Discussion of Results

Experimentally determined heat-flux and pressure
distributions downstream of the coolant injection slot are
shown first in tabulated form and then as individual
plots. The tabulated data have been normalized to the
undisturbed flow case with no coolant by using the Fay
and Riddell heat transfer to a 3-in-diameter cylinder and
stagnation pressure ratios as shown in table I. The
smoothed curve was computed by averaging each data
point with the linear interpolation of the value from its
two nearest neighbors. This smoothing, at the risk of
attenuating real local maximum and minimum values of
the data, removes some of the data scatter that is inherent
in the flow-field nonuniformity. These smoothed curves
are used to facilitate direct comparison of data sets in the
text. Heat-flux distributions over the foreplate for all
tests show that run-to-run variations are less than
±5 percent.

Coolant Mass Flow Effects

Heat-flux and pressure distribution data for flow
with no coolant and for both hydrogen and helium cool-
ants delivered over a range of flow rates are listed in
tables IV and V, respectively. The data are plotted as
follows:

1. Baseline heat flux with no coolant and the pressure
data are shown in figure 7.

2. Hydrogen and helium coolant heat-flux data are
shown in figures 8 and 9, respectively.

3. Hydrogen and helium coolant pressure data are shown
in figures 10 and 11, respectively.

q x( ) 9.14 0.119x– 0.0034x
2

+=

Data from the flow configuration with no coolant
(fig. 7) show the low heat-flux region in the separated
flow region immediately downstream of the rearward-
facing step followed by a peak heat flux when the flow
reattaches. After reattachment, the heat flux and pressure
essentially return to the flat-plate value about ten slot
heights (1.2 in.) downstream; there is some oscillation as
the disturbance is damped out. There are two areas with
anomalies that are probably not associated with the pri-
mary phenomenon under consideration. The first occurs
in the heat flux approximately 5.5 in. from the slot and
may originate at the joint between the instrumented
plates. This joint was initially aligned and smoothed with
wax, but may be displaced during a test by a pressure dif-
ferential between the top and bottom of the plate. Pres-
sure instrumentation in this region is not sufficient to
capture the disturbance. The second anomaly is a pres-
sure rise 10 to 14 in. downstream from the slot (out of
view of the tunnel window) that is probably caused by an
extraneous disturbance, such as a shock, in the flow. This
pressure rise plainly appears in all the pressure data and
appears less distinctly in the heat-flux data.

Heat-flux data with hydrogen and helium film cool-
ants in an undisturbed flow are compared in figures 12(a)
and 12(b), respectively. These data show that the effects
of imbedded shock and expansion regions that result
from the various coolant delivery pressures,

, are confined to the near-slot region
(i.e., , wherex = 3 in.). Downstream of this
region the reduction in heat flux is a function of the cool-
ant mass flow rate only. A diminishing return on heat-
flux reduction by increasing coolant mass flow rates is
readily apparent in the data and suggests that a given
coolant mass may be more effectively used by injecting
through a series of small slots spaced along the down-
stream direction rather than a single larger slot (also
noted from the stage 1 results, ref. 8).

A comparison of heat flux for both hydrogen and
helium coolant gases at the same mass flow rate,
0.662 lbm/sec-in2, is shown in figure 12(c). The data for
helium coolant at this flow rate was obtained by interpo-
lating the bracketing flow rates. The interpolated deliv-
ery pressure ratio  for helium is 0.81 and 2.0 for
hydrogen; however, as noted previously, the effect of
delivery pressure is confined to the near-slot region. The
downstream region shows that for the same mass flow
rate, hydrogen coolant reduced the local heat flux 10 to
20 percent more than helium coolant.

There have been several attempts (e.g., refs. 11
and 12) to develop correlations for film cooling data. The
following basic correlation is used:

(2)

0.5 pc≤ pe⁄ 2.0≤
x s 25<⁄

pc pe⁄

1 q q0⁄– x s⁄( ) mc m∞⁄( ) .8–
=
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where  is the flat-plate reference heating rate,  is
coolant mass flow per unit area, and  is the free-
stream mass flow per unit area. This correlation is
applied to the hydrogen and helium data in figure 13(a)
and collapses the data for each gas into a single curve.
However, the two gases have distinctly different curves.
Suggestions of other parameters to be included in the
correlation are made in reference 12. A variation of the
basic correlation suggested in the present study uses a
ratio of the energy flux (internal energy plus kinetic
energy, ) of the two streams instead
of mass flux alone, as follows:

(3)

This correlation collapses the data for both coolant gases
into a single curve (fig. 13(b)).

Incident Shock Effects

Heat-flux and pressure distribution data for
horizontal-wedge-induced shocks with flow turning
angles of 2.5°, 5.0°, and 7.5° incident on a hydrogen
coolant film with a mass flow rate of 0.260 lbm/sec-in2

 are listed in tables VI and VII. In addition
to the base free-stream Reynolds number of ,
based on the foreplate length to the coolant slot, data
were taken at a free-stream Reynolds number of

 (2.5° and 5.0° shocks only). The heat-flux
and pressure data for the base Reynolds number are
shown in figures 14 and 15. The heat-flux and pressure
data for the reduced Reynolds number are shown in
figures 16 and 17.

Heat-flux and pressure data for the base Reynolds
number cases are summarized in figure 18. If the flow
were inviscid, the shocks would have impinged on the
plate approximately 2 in. downstream of the slot and
there would have been an instantaneous jump to the post-
shock conditions. However, viscous effects alone stretch
the interaction region to several inches in length (ref. 7),
and the presence of the cooling layer stretches it several
more inches. The values of downstream heat flux for the
5.0° and 7.5° shocks are only 6 to 8 percent less than the
heat flux with no coolant (ref. 7). Interaction with an
expansion fan from the trailing edge of the shock genera-
tor caused the sharp drop in the 7.5° shock heat flux start-
ing about 14 in. from the slot. Post-shock pressure levels
with 5.0° and 7.5° shocks were approximately the same
as for shock results with no coolant (ref. 7), but all post-
shock pressures were approximately 20 percent higher
than inviscid theory predictions (fig. 15).

q0 mc
m∞

cvT V2+ 2gc⁄ J( ) m

1 q q0⁄– x s⁄( )
cvTc Vc

2
2gcJ⁄( )+[ ] mc

cvT∞ V∞
2

2gcJ⁄( )+[ ] m∞

----------------------------------------------------------------
 
 
  .8–

=

pc pe⁄ 1.0=( )
19.8 106×

11.75 106×

Heat-flux and pressure data for the reduced Rey-
nolds number ( ) are compared with those for
the base Reynolds number ( ) in figures 19
and 20. This 40-percent reduction in Reynolds number
(the result of a shortened foreplate) and its associated
reduction in free-stream boundary-layer thickness from
0.44 in. to 0.34 in. had no significant effect on either the
heat-flux distribution or the pressure distribution down-
stream of the coolant slot (except for the anomalous
excursion in heat flux downstream of the interplate joint
at 5 in.).

A schlieren photograph and flow-field schematic for
the 5.0° incident shock at the reduced Reynolds number
are shown in figure 21 and are typical of all the incident
shock tests. The photograph, taken through a 16-in-
diameter window, has the coolant slot approximately
centered. Two coolant nozzle assembly joints ahead of
the slot still leaked some hydrogen coolant, but the dis-
turbance degenerated to a Mach wave in the free stream
so that it had minimal effect on the flow. The incident
shock and reflected shocks, as well as a weak shock that
appears to originate from the joint between the 5-in. and
12-in. instrumented plates (corresponds to the data fluxu-
ations previously noted), are identified. Thinning of the
boundary layer by the incident shock is evident from the
dark and light regions near the wall and may indicate the
thickness of the hydrogen layer and mixing layer.

Swept-Shock Effects

Heat-flux and pressure distribution data for a
5°-turning-angle, vertical-wedge-induced shock sweep-
ing across the instrumented region are listed in
tables VIII and IX. The data include flow with no coolant
and with hydrogen coolant films with mass flow rates of
0.260 lbm/sec-in2  and 0.662 lbm/sec-in2

. No-coolant data are shown in figures 22
and 23; low-coolant flow-rate data are shown in
figures 24 and 25; higher flow-rate data are shown in
figures 26 and 27. The shock generator was located in
four different spanwise positions on the plate (fig. 5), so
that the shock crossed the coolant slots at different points
as indicated. The thin-film temperature gauges are
located near the model centerline, but pressure instru-
mentation is offset in two rows (fig. 3). As a result of
these offsets, the pressure distributions for position 3
gauges 1 to 9 and position 4 gauges 10 to 16 correspond
to the heat-flux distribution for position 2, and the pres-
sure distribution position 4 gauges 1 to 9 correspond to
the heat-flux distribution for position 3. These data form
a complete set of coincident heat-flux and pressure
results that are equivalent to the configuration with the
shock crossing the coolant slots at the centerline (y = 0.0)

11.75 106×
19.8 106×

pc pe⁄ 1.0=( )
pc pe⁄ 2.0=( )
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and are shown in figure 28 for each of the coolant flow
conditions.

Heat-flux distributions for the swept shock with no
coolant (fig. 22) are compared with the undisturbed (no-
shock) no-coolant flow distributions. The point at which
the shock crosses the centerline instrumentation is
labeled, except for position 1, where the shock crosses
the centerline ahead of the coolant slot and the entire
instrumentation region is behind the shock. Heat flux
begins to rise behind the shock intersection and appears
to reach a maximum and then decline. The location of the
maximum moves downstream as the shock crossing
point moves downstream. The decline in heat flux after
the maximum is reached is the result of boundary-layer
interaction with the expansion fan from the trailing edge
of the shock generator (fig. 5). The pressure distributions
show no increase that is directly related to the shock
location (fig. 23); the pressure level seems to rise behind
the slot to some uniform level that depends on the shock
location—the farther downstream the shock the lower the
uniform pressure level. Only when the shock is in
position 1 does the downstream pressure level approach
the predicted inviscid pressure level (except for the pre-
viously noted extraneous pressure rise at approximately
13 in. downstream). These behaviors suggest that the
spanwise pressure gradient, induced in the free stream by
the swept shock, is driving a three-dimensional relief of
the flow through the boundary layer that retards the heat-
flux and pressure rises.

Heat-flux and pressure distributions for the 5°-flow-
turning-angle, swept shock with hydrogen coolant film
and  lbm/sec-in2 , (figs. 24
and 25), are compared with the equivalent undisturbed
flow distributions and with the results of the
2.5°-incident oblique shock which, because of shock
reflection, results in the same total pressure rise
(∆p = 1.03 psia). The coolant delivery pressure,

, is matched to the preshock free-stream
pressure. Coolant flow, in both swept and incident shock
configurations, reduces the heat flux in the near-slot
region,  in., to nearly zero. The 5°-swept-shock heat
flux rises to the undisturbed value (fig. 22) between

 in., but the 2.5°-incident-shock heat flux does
not reach the undisturbed values until  in. The sig-
nificant difference in heat flux between these two config-
urations with the same pressure rise can be attributed to
the growth of the separated flow region and the spiral
vortex formed at the base of the swept shock. Fed by the
third component of velocity, a steady supply of high-
temperature fluid from the free stream is transported
through the boundary layer to the wall region; con-
versely, the coolant film is dispersed into the mainstream
flow. Pressure distributions with coolant flow (fig. 25)

mc 0.260= pc pe⁄ 1.0=( )

pc pe⁄ 1.0=

x 5≤

5 x 10< <
x 15>

are virtually the same as the no-coolant pressure distribu-
tions (fig. 23).

Heat-flux and pressure distributions for the swept
shock with hydrogen coolant film with a mass flow rate
of 0.662 lbm/sec-in2  are compared
with the equivalent undisturbed flow distributions in
figures 26 and 27. The coolant delivery pressure,

, is matched to the post-shock free-stream
pressure. This higher coolant mass flow slightly extends
the region of near-zero heat-flux and retards the rise to
the undisturbed level. Otherwise, the performance is sim-
ilar to the lower coolant mass flow rate. Again, the pres-
sure distributions are virtually the same as the no-coolant
and the low coolant mass flow-rate data.

The composite plot of coincident heat flux and pres-
sure data at the equivalent shock location ofy = 0.0
shows the effect of coolant delivery pressure (mass flow
rate). Matching the post-shock pressure
instead of the preshock pressure  doubles
the coolant mass flow rate but results in only a small
decrease in heat flux. This diminishing return on heat-
flux reduction, as shown in the section “Coolant Mass
Flow Effects,” suggests that multiple small slots would
be a more effective arrangement for injecting a given
mass flow rate of coolant gas. Also, multiple coolant
slots in the presence of swept shocks aid in renewing the
coolant layer downstream of the shock interaction and
reduce the effect of three-dimensional flow effects.

Concluding Remarks

An experimental test program for film cooling was
conducted in the Calspan 48-Inch Shock Tunnel at a free-
stream Mach number of 6.4. Hydrogen was the primary
coolant gas, although some helium tests were conducted.
To preclude combustion effects, the test stream was
nitrogen. Test configurations included coolant mass flow
rate effects in undisturbed flow over a flat plate with a
rearward-facing coolant injection slot, incident shock
interactions, and swept-shock interactions.

Coolant mass flow rate tests show both hydrogen
and helium coolant gases to be effective in reducing wall
heat flux in undisturbed flow. Hydrogen was a more
effective coolant than helium. However, there was a
diminishing return on heat-flux reduction with increasing
mass flow rate. The basic film-cooling correlation that
appears in the literature and utilizes a coolant to free-
stream mass flux ratio, was modified to a coolant to free-
stream energy flux ratio. The modified correlation col-
lapses the data from both coolant gases into a single
curve.

pc pe⁄ 2.0=( )

pc pe⁄ 2.0=

pc pe⁄ 2.0=( )
pc pe⁄ 1.0=( )
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Incident oblique shock interaction tests showed that
hydrogen film-cooling effectiveness was essentially
destroyed by an incident shock. The region between the
slot and the shock was well cooled, but downstream of
the shock interaction the heat flux was nearly the same as
with no-coolant flow.

Swept-shock interaction tests also showed that the
region between the slot and the shock was well cooled;
downstream of the shock interaction, however, the heat
flux was nearly the same as with no-coolant flow. How-
ever, for shocks with equal pressure rises, the swept
shock produced larger interaction regions with higher
heat fluxes than did incident shocks. These higher heat
fluxes are attributed to the three-dimensional growth of
the resulting separated flow region and spiral vortex
associated with swept shocks.

NASA Langley Research Center
Hampton, VA 23681-0001
April 10, 1995
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Table I.  Test Matrix

[Baseline conditions:Q0(ref) = 61.36 Btu-ft2/sec;p0(ref) = 2252 psia]

Configuration Run

Coolant Reynolds Shock interaction Normalization factors

Type number Type Location, in. (ref) (ref)

Baseline 9 None None 1 1

Coolant 10 H2 0.50 None 0.996 1.025

mass flow 11 H2 1.00 None 1.001 1.042

12 H2 1.50 None 0.993 1.042

13 H2 2.00 None 0.986 1.021

8 He 0.50 None 1.021 1.028

7 He 1.00 None 0.992 1.001

6 He 1.50 None 1.081 1.080

5 He 2.00 None 1.028 1.035

Incident 21 H2 1.00 2.5° incident x = 2.0 1.044 1.114

shock 17 H2 1.00 5.0° incident x = 2.8 0.995 1.058

19 H2 1.00 7.5° incident x = 2.0 1.054 1.058

23 H2 1.00 2.5° incident x = 2.0 1.050 1.066

24 H2 1.00 5.0° incident x = 2.0 1.065 1.107

Swept shock 33 None 5.0° swept y = −0.424 0.989 1.054

35 None 5.0° swept y = 0.0 0.978 1.058

36 None 5.0° swept y = 0.424 1.008 1.076

37 None 5.0° swept y = 0.848 1.018 1.079

32 H2 1.00 5.0° swept y = −0.424 1 1.058

29 H2 1.00 5.0° swept y = 0.0 1.037 1.085

25 H2 1.00 5.0° swept y = 0.424 1.056 1.076

28 H2 1.00 5.0° swept y = 0.848 1.033 1.082

31 H2 2.00 5.0° swept y = −0.424 1.025 1.060

30 H2 2.00 5.0° swept y = 0.0 1.027 1.054

26 H2 2.00 5.0° swept y = 0.424 1.027 1.031

27 H2 2.00 5.0° swept y = 0.848 1.041 1.074

pc pe⁄ Q0 Q0⁄ p0 p0⁄

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

11.75 10
6×

11.75 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×

19.8 10
6×
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*Based on momentum integral thickness.

*Assumed constant with temperature.

Table II.  Free Stream and Coolant Flow Conditions

Flow Free stream Coolant (at slot exit)
variable (at coolant slot) Hydrogen Helium

M......................... 6.4 2.7 3
R .........................11.75 and 293* 369*

δ, in..................... 0.34 and 0.44 0.024 0.019
p, psia ................. 0.93 0.046 to 1.86 0.046 to 1.86

, °R................. 2189 536 536
T, °R.................... 253.5 218 134
V, ft/sec ............... 5000 7410 5000
m, lbm/sec-in2 .... 0.344 0.163 0.520

0.260 0.749
0.460 1.170
0.662 1.580

Table III.  Free Stream and Coolant Gas Properties

Free-stream Coolant gas
nitrogen, Hydrogen, Helium,

Property T = 253.5°R T = 218°R T = 134°R
γ∗ ............................................... 1.4 1.4 1.67
Gas constant, ft-lbf/lbm-°R....... 55.16 766.5 386.1

, Btu/lbm-°R.......................... 0.18 2.46 0.74
µ, lbm/ft-sec ..............................
ν, ft2/sec ....................................

19.8 10
6×

T0

pc pe⁄ 0.5=( ) pc pe⁄ 0.5=( )
pc pe⁄ 1.0=( ) pc pe⁄ 1.0=( )
pc pe⁄ 1.5=( ) pc pe⁄ 1.5=( )
pc pe⁄ 2.0=( ) pc pe⁄ 2.0=( )

cv
0.63 10

5–× 0.38 10
5–× 1.07 10

5–×
4.53 10

5–× 67 10
5–× 72 10

5–×
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Table IV.  Coolant Mass Flow Effects for Heat-Flux Data

Distance Heat flux, Btu/ft2-sec
Gauge from No Hydrogen coolant Helium coolant
label slot, in. coolant

P5H1 0.41 0.00 0.05 −0.31 −0.25 0.25 −0.78 −0.17 −0.61 −0.17
P5H2 0.50 3.33 0.20 0.93 −0.13 0.66 −0.12 1.43 −0.61 1.43
P5H3 0.60 7.77 0.49 0.55 −0.94 0.27 1.13 3.13 −0.30 3.13
P5H4 0.70 11.75 −0.01 0.25 −0.12 0.50 0.79 0.47 0.02 0.47
P5H5 0.80 1.52 1.26 0.20 1.26
P5H6 0.89 10.90 −0.67 0.38 0.59 0.71 −0.26 1.69 −0.28 1.69
P5H7 0.99 10.55 −1.85 0.78 −0.49 0.52 −0.50 −0.68 −0.93 −0.68
P5H8 1.09 10.49 −1.23 0.24 0.59 1.59 0.18 0.58 0.01 0.58
P5H9 1.17 10.64 −2.22 −1.19 −0.47 −0.18 −0.75 0.50 −1.38 0.50
P5H10 1.26 8.59 −1.90 −1.93 0.10 0.06 0.57 0.63 0.90 0.63
P5H11 1.35 8.54 −1.75 −1.39 −0.40 0.14 −0.03 1.78 0.84 1.78
P5H12 1.40 −0.38 2.16 0.73 2.16
P5H13 1.48 8.85 −0.64 0.68 −0.31 1.86 −0.70 1.82 0.09 1.82
P5H15 1.67 8.43 −0.32 0.56 −0.17 0.68 −0.20 0.98 0.81 0.98
P5H16 1.76 8.07 0.75 0.00 0.38 0.95 −0.35 2.34 0.50 2.34
P5H17 1.86 9.03 0.84 −0.22 0.40 0.92 −1.78 2.29 0.59 2.29
P5H21 2.25 0.36 3.25 0.88 3.25
P5H23 2.47 8.92 1.14 0.34 0.18 0.58 0.47 1.24 0.32 1.24
P5H24 2.57 8.70 0.97 0.21 0.05 0.40 0.32 1.45 0.26 1.45
P5H25 2.67 8.77 1.27 0.67 0.37 0.94 0.82 1.47 0.48 1.47
P5H26 2.76 8.78 1.69 1.01 0.70 1.15 0.94 1.59 0.43 1.59
P5H27 2.86 8.19 1.14 0.58 0.00 0.38 0.53 1.04 0.29 1.04
P5H28 2.96 9.11 1.52 0.84 0.44 0.83 0.97 1.51 0.37 1.51
P5H29 3.05 8.41 1.32 0.79 0.16 0.67 0.82 1.37 0.37 1.37
P5H30 3.15 8.76 1.47 0.64 0.11 0.48 0.94 1.45 0.31 1.45
P5H31 3.25 9.00 1.50 0.96 0.22 0.58 0.71 1.94 0.44 1.94
P5H32 3.34 8.36 1.25 0.42 0.19 0.31 0.97 1.42 0.44 1.42
P5H33 3.49 8.20 1.67 0.91 0.54 0.58 1.31 1.89 0.67 1.89
P5H34 3.69 7.79 1.41 0.72 0.30 0.53 0.47 0.93 0.38 0.93
P5H35 3.90 7.71 1.59 1.00 −0.06 0.51 0.30 1.11 0.48 1.11
P5H36 4.10 7.89 1.96 0.88 0.74 0.94 1.52 0.08 0.66 0.08
P5H37 4.31 8.11 1.78 1.21 0.10 0.65 0.90 1.05 0.75 1.05
P5H40 4.96 8.15 1.97 1.38 0.76 0.56 1.49 0.86 0.51 0.86
P5H41 5.16 8.18 1.90 1.57 0.70 0.51 1.24 1.16 0.52 1.16
P12H1 5.48 8.53 2.89 2.44 0.98 1.09 1.44 1.61 0.55 1.61
P12H2 5.58 8.46 2.70 2.50 0.73 0.71 1.44 1.45 0.60 1.45
P12H3 5.67 7.87 2.64 1.90 1.42 0.67 1.86 1.52 1.32 1.52
P12H4 5.77 9.06 2.99 2.47 2.32 1.20 2.13 2.14 2.12 2.14
P12H6 5.97 8.24 3.14 2.11 1.28 0.81 2.08 1.54 1.02 1.54
P12H7 6.07 7.55 2.77 1.61 1.23 0.91 2.14 0.91 0.91 0.91
P12H9 6.26 7.70 2.33 1.73 0.82 0.58 1.88 1.18 0.91 1.18
P12H11 6.46 7.42 2.62 2.25 1.00 1.06 1.61 1.32 1.61
P12H13 6.64 7.32 2.90 1.93 1.20 1.27 1.84 2.03 1.36 2.03
P12H15 6.81 7.33 3.02 2.99 1.60 0.41 2.79 2.38 1.20 2.38
P12H17 6.99 7.67 2.94 2.26 1.32 0.86 2.78 2.24 1.56 2.24
P12H19 7.17 8.00 2.81 2.08 1.06 0.80 2.38 1.88 1.26 1.88
P12H21 7.63 7.74 3.02 1.97 1.10 0.80 1.68 0.96 0.84 0.96
P12H23 8.90 7.98 3.60 2.48 1.57 1.17 2.17 1.24 1.12 1.24
P12H27 11.46 8.69 3.94 2.31 1.35 1.33 1.28 0.71 1.28
P12H29 12.74 7.00 4.12 2.73 1.70 1.54 2.71 1.36 1.37 1.36
P12H30 13.38 8.56 4.89 3.21 2.20 1.63 3.28 1.61 1.59 1.61
P12H31 14.02 8.53 5.17 3.33 2.31 1.99 3.33 1.81 1.73 1.81
P12H32 14.66 8.02 4.93 3.41 2.06 1.81 3.75 1.87 1.97 1.87
P12H33 15.31 8.59 5.20 3.49 2.30 1.92 3.69 1.75 1.75 1.75
P12H34 15.95 8.28 5.60 3.74 2.43 2.10 3.80 1.84 1.85 1.84
P12H35 16.58 8.11 5.61 3.66 2.48 2.15 3.81 1.80 1.94 1.80

pc pe⁄ 0.5= pc pe⁄ 1.0= pc pe⁄ 1.5= pc pe⁄ 2.0= pc pe⁄ 0.5= pc pe⁄ 1.0= pc pe⁄ 1.5= pc pe⁄ 2.0=
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Table V.  Coolant Mass Flow Effects for Pressure Distribution Data

Distance Pressure, psia
Gauge from No Hydrogen coolant Helium coolant
label slot, in. coolant

P5P10 0.64 0.30 0.67 0.84 0.83 1.09 1.00 0.94 1.00
P5P1 0.73 0.58 0.73 0.80 0.87 0.76 0.80 0.86 0.72 0.68
P5P12 1.15 0.70 0.91 0.94 1.03 1.02 0.92 0.96 0.95 0.93
P5P2 1.25 0.86 1.09 1.12 1.16 1.25 1.01 1.06 1.06 1.08
P5P14 1.62 0.71 0.91 0.94 1.00 1.04 0.90 0.95 0.96 1.03
P5P3 1.76 0.83 1.00 1.04 1.06 1.09 1.01 1.04 1.03 1.13
P5P16 2.18 0.81 0.97 1.01 1.06 1.09 1.00 1.04 1.03 1.12
P5P4 2.26 0.85 0.98 1.03 1.07 1.10 1.00 1.04 1.02 1.07
P5P5 2.77 0.85 0.98 1.03 1.07 1.10 1.01 1.05 1.03 1.08
P5P6 3.27 0.85 1.05 1.07 1.14 1.16 1.06 1.10 1.06 1.13
P5P8 4.27 0.97 1.13 1.15 1.21 1.24 1.14 1.17 1.14 1.22
P5P9 4.77 0.82 0.98 0.98 1.03 1.04 0.93 0.99 0.99 1.04
P12P1 5.72 0.92 0.96 1.00 1.05 1.03 0.97 1.03 1.00 1.03
P12P5 8.28 0.89 0.76 0.98 1.02 1.03 0.98 1.03 1.00 1.01
P12P7 9.56 0.93 0.94 0.98 0.98 0.99 0.98 1.03 0.94 0.98
P12P8 10.20 0.88 0.88 0.90 0.94 0.94 0.90 0.94 0.91 0.94
P12P9 10.84 0.82 0.90 0.92 0.96 0.96 0.88 0.93 0.90 0.92
P12P10 11.48 0.85 0.85 0.88 0.91 0.91 0.88 0.90 0.89 0.91
P12P11 12.12 0.88 0.89 0.89 0.92 0.92 0.91 0.93 0.90 0.92
P12P12 12.76 1.03 1.03 1.05 1.08 1.07 1.07 1.07 1.04 1.08
P12P13 13.40 1.07 1.06 1.10 1.13 1.12 1.10 1.09 1.07 1.11
P12P14 14.04 0.88 0.87 0.89 0.92 0.92 0.90 0.93 0.91 0.93
P12P15 14.68 0.87 0.86 0.87 0.89 0.89 0.87 0.90 0.88 0.90
P12P16 15.32 0.91 0.87 0.90 0.93 0.92 0.88 0.92 0.89 0.93
P12P17 15.96 0.91 0.92 0.93 0.95 0.94 0.93 0.96 0.92 0.95

pc pe⁄ 0.5= pc pe⁄ 1.0= pc pe⁄ 1.5= pc pe⁄ 2.0= pc pe⁄ 0.5= pc pe⁄ 1.0= pc pe⁄ 1.5= pc pe⁄ 2.0=
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Table VI.  Incident-Shock Heat-Flux Data With Hydrogen Coolant at

Distance Heat flux, Btu/ft2-sec

Gauge from
label slot, in. No shock 2.5° shock 5.0° shock 7.5° shock 2.5° shock 5.0° shock

P5H1 0.41 −0.31 −0.18 1.36 0.93 0.74 0.90
P5H2 0.5 0.93 −0.10 0.75 −0.84 −0.60 0.48
P5H3 0.6 0.55 −0.67 1.98 −0.34 −0.23 0.72
P5H4 0.7 0.25 0.20 −0.16 −1.12 −0.74 −2.56
P5H6 0.89 0.38 −0.18 −0.14 −0.13 −0.95 −0.92
P5H7 0.99 0.78 −0.12 −2.31 0.65 2.48 −1.59
P5H8 1.09 0.24 −0.71 −0.61 −0.18 −4.88 −2.94
P5H9 1.17 −1.19 0.50 −0.78 −0.12 0.53 −0.48
P5H10 1.26 −1.93 −2.30 −0.97 −1.17 −1.46 −0.51
P5H11 1.35 −1.39 −1.85 −1.93 −1.62 −0.59 −1.43
P5H13 1.48 0.68 −0.26 −2.55 0.77 −1.15 −1.10
P5H15 1.67 0.56 −2.08 −1.00 −2.39 −0.04 0.05
P5H16 1.76 0.00 −0.96 −0.56 −0.40 −0.31 −0.49
P5H17 1.86 −0.22 1.44 −2.54 2.57 −0.73 −2.44
P5H24 2.57 0.21 0.14 0.64 3.47 0.39 1.55
P5H25 2.67 0.67 0.54 0.52 3.12 0.51 2.54
P5H26 2.76 1.01 0.95 0.00 3.13 0.55 2.37
P5H27 2.86 0.58 1.21 0.46 3.09 1.19 2.10
P5H28 2.96 0.84 1.24 0.87 3.60 2.40 2.78
P5H29 3.05 0.79 1.53 0.56 3.55 1.70 2.96
P5H30 3.15 0.64 1.66 1.03 4.15 2.04 3.33
P5H31 3.25 0.96 1.89 0.95 4.15 2.33 4.05
P5H33 3.49 0.91 1.29 0.81 4.51 2.68 4.93
P5H34 3.69 0.72 1.67 3.14 6.65 4.13 5.72
P5H35 3.9 1.00 2.15 3.93 8.22 2.51 6.39
P5H36 4.1 0.88 2.52 4.05 9.62 2.80 6.09
P5H37 4.31 1.21 2.67 6.26 12.97
P5H40 4.96 1.38 2.98 8.34 20.04 5.57 9.80
P5H41 5.16 1.57 3.37 8.12 22.21 5.55 11.51
P12H1 5.48 2.44 5.06 10.35 29.56 8.62 18.24
P12H2 5.58 2.50 5.64 10.85 29.78 7.77 17.69
P12H3 5.67 1.90 5.62 9.54 27.77 7.02 16.59
P12H4 5.77 2.47 6.45 11.44 30.22 7.53 17.41
P12H6 5.97 2.11 5.35 11.74 30.42 7.44 16.66
P12H7 6.07 1.61 4.69 12.94 31.54 6.33 18.49
P12H9 6.26 1.73 5.51 12.84 33.03 6.71 17.94
P12H11 6.46 2.25 6.48 13.23 36.49 7.91 20.30
P12H13 6.64 1.93 6.58 14.53 37.12 8.07 21.37
P12H17 6.99 2.26 6.84 16.52 40.31 6.38 21.35
P12H19 7.17 2.08 4.24 17.41 44.46 5.49 16.09
P12H21 7.63 1.97 7.66 17.51 46.95 3.37 15.79
P12H23 8.9 2.48 9.67 27.46 57.40 10.60 30.13
P12H27 11.46 2.31 12.01 29.55 55.61 11.07 32.13
P12H29 12.74 2.73 11.80 30.15 50.63 12.10 28.03
P12H30 13.38 3.21 13.99 34.63 57.00 13.93 30.66
P12H31 14.02 3.33 14.41 34.13 55.65 14.01 30.31
P12H32 14.66 3.41 15.35 34.13 49.65 14.37 30.15
P12H33 15.31 3.49 15.14 34.03 44.24 15.74 31.65
P12H34 15.95 3.74 15.24 34.23 37.38 15.47 28.74
P12H35 16.58 3.66 16.50 32.04 32.41 15.64 25.27

m 0.260= pc pe⁄ 1.0=( )

R 19.8 106×= R 11.75 106×=
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Table VII.  Incident-Shock Pressure Distribution Data With Hydrogen Coolant at

Distance Pressure, psia

Gauge from
label slot, in. No shock 2.5° shock 5.0° shock 7.5° shock 2.5° shock 5.0° shock

P5P10 0.64 0.84 0.81 0.79 0.80 0.72 0.76
P5P1 0.73 0.80 0.95 0.83 0.88 0.74 0.78
P5P12 1.15 0.94 0.62 0.97 0.93 0.90 0.92
P5P2 1.25 1.12 1.11 1.06 1.08 1.01 1.05
P5P14 1.62 0.94 0.95 0.93 0.95 0.88 0.91
P5P3 1.76 1.04 0.94 1.06 1.08 1.01 1.03
P5P16 2.18 1.01 1.11 1.02 1.37 0.99 1.04
P5P4 2.26 1.03 1.35 1.07 1.88 1.06 1.09
P5P5 2.77 1.03 1.69 1.05 2.44 1.33 1.89
P5P6 3.27 1.07 1.82 1.02 2.61 1.85 2.55
P5P8 4.27 1.16 2.32 2.91 4.28 2.55 4.00
P5P9 4.77 0.98 1.80 2.79 4.08 2.35 3.61
P12P1 5.72 1.00 2.29 3.57 5.69 2.75 4.20
P12P3 7.00 0.99 2.16 4.14 7.22 2.40 4.79
P12P5 8.28 0.98 1.62 4.54 7.86 2.33 4.76
P12P7 9.56 0.98 2.37 4.94 8.49 2.18 4.40
P12P8 10.20 0.90 1.87 4.43 8.02 2.07 4.35
P12P9 10.84 0.92 2.27 4.70 8.09 1.96 3.82
P12P10 11.48 0.88 2.33 4.42 7.89 2.07 4.17
P12P11 12.12 0.90 2.15 4.57 7.95 2.05 4.03
P12P12 12.76 1.05 2.64 5.06 8.34 2.25 4.52
P12P13 13.40 1.09 2.80 5.04 7.99 2.37 4.53
P12P14 14.04 0.89 2.34 4.45 7.47 2.04 3.99
P12P15 14.68 0.87 2.24 4.33 6.60 1.99 3.88
P12P16 15.32 0.90 2.37 4.45 5.80 2.09 4.00
P12P17 15.96 0.93 2.38 4.32 4.67 2.15 3.92

m 0.260= pc pe⁄ 1.0=( )

R 19.8 106×= R 11.75 106×=
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Table VIII.  Swept-Shock Heat-Flux Data

Distance Heat flux, Btu/ft2-sec
Gauge from No coolant

label slot, in. Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 1 Pos. 2 Pos. 3 Pos. 4
P5H1 0.41 −1.49 −0.31 0.69 0.77 0.79 −2.34 0.84 0.69
P5H2 0.50 −1.11 0.14 −6.00 0.30 3.36 −1.37 −0.13 0.84
P5H3 0.60 8.36 9.98 10.38 9.80 −0.73 1.11 −4.30 3.32 5.93 3.46 −0.52 1.60
P5H4 0.70 18.42 13.69 14.62 13.64 2.86 0.34−8.65 −3.46 −1.68 0.56 1.30 0.75
P5H5 0.80 18.94 11.34 14.92 12.42 −0.33 0.57 −8.81 −0.30 −2.58 2.77 −0.47 −0.26
P5H6 0.89 14.52 11.15 10.18 8.31 −0.23 −1.44 −8.56 0.07 1.82 −2.98 1.22 0.16
P5H7 0.99 11.78 12.91 11.89 9.26 0.87−1.14 −7.85 −3.62 5.23 0.05 −0.29 −0.51
P5H8 1.09 12.56 11.54 10.89 9.21 0.10−1.28 −3.22 −0.82 −1.10 −0.45 −1.73 0.66
P5H10 1.26 10.25 10.66 10.89 8.45 −0.72 −1.53 −2.45 −1.46 1.80 2.63 −0.69 0.86
P5H13 1.48 14.38 13.01 10.28 8.52 0.01 0.14 1.59−0.59 −1.06 0.74 −1.54 −0.80
P5H15 1.67 10.68 11.34 10.06 9.44 −0.30 −0.56 3.09 −1.98 5.03 2.41 2.19 0.13
P5H16 1.76 −1.53 −0.52 2.84 −0.29 0.36 −1.65 −1.70 −0.22
P5H17 1.86 13.09 15.75 9.69 10.28 −0.55 0.04 0.93 0.59 −1.29 2.72 0.85 −1.78
P5H21 2.25 14.99 16.23 11.10 9.65
P5H23 2.47 17.32 15.75 11.89 10.12 1.65 1.21 1.68 1.31 1.00 0.62 0.98 0.31
P5H24 2.57 17.20 15.65 12.10 10.28 2.07 1.88 1.92 1.90 1.35 1.15 1.05 0.80
P5H25 2.67 17.31 15.55 12.20 10.28 2.31 1.55 1.55 1.76 0.91 0.73 0.72 0.63
P5H26 2.76 17.48 15.45 12.40 10.49 1.79 1.23 1.27 1.40 0.38 0.43 0.22 0.33
P5H27 2.86 16.30 14.18 11.39 9.75 1.81 1.50 1.72 2.00 0.87 0.55 0.79 0.62
P5H28 2.96 18.04 15.65 13.00 11.20 2.25 2.05 2.09 2.06 1.65 0.97 1.08 0.69
P5H29 3.05 16.99 14.47 12.10 10.14 2.36 1.70 1.97 1.92 1.34 0.81 1.06 0.66
P5H30 3.15 17.89 15.26 12.70 10.49 2.42 1.89 2.07 2.11 1.47 1.07 1.12 0.69
P5H31 3.25 17.94 15.55 12.60 10.55 2.80 2.15 2.77 2.69 1.76 1.54 1.41 1.16
P5H33 3.49 17.30 15.26 12.50 10.69 1.98 1.77 2.26 2.05 0.97 1.24 0.64 1.27
P5H34 3.69 17.49 15.16 12.70 10.49 2.79 1.59 2.08 2.16 1.48 1.08 0.94 1.20
P5H35 3.90 16.94 14.87 12.30 9.28
P5H36 4.10 17.00 15.06 12.90 9.69 3.20 2.29 2.66 2.26 1.23 1.39 0.67 0.85
P5H40 4.96 19.97 17.51 14.31 10.79 5.58 3.65 2.59 3.06 2.85 2.01 1.76 1.86
P5H41 5.16 20.00 17.51 14.31 10.59 5.83 3.92 2.97 3.68 2.91 2.27 2.10 2.48
P12H1 5.48 29.56 26.80 19.86 13.84 18.48 9.48 5.64 3.77 7.02 3.93 2.17 2.06
P12H2 5.58 33.19 24.25 19.25 13.74 18.40 10.00 6.45 4.30 7.10 4.20 2.69 2.81
P12H3 5.67 29.17 21.91 16.93 12.73 16.59 8.25 5.87 2.90 6.51 3.79 1.16 2.59
P12H4 5.77 28.93 23.67 18.35 13.84 15.71 9.08 7.19 3.02 6.19 5.88 2.90 2.74
P12H6 5.97 24.43 21.32 16.03 13.54 14.68 8.85 6.70 3.09 5.37 6.09 2.72 2.13
P12H7 6.07 24.64 22.20 16.83 13.13 18.06 11.41 7.77 4.01 5.91 5.87 3.89 2.73
P12H9 6.26 21.81 20.34 17.54 12.52 17.34 10.89 7.28 3.55 7.40 5.92 4.53 2.35
P12H11 6.46 21.15 20.05 17.74 12.62 17.82 10.58 8.31 3.53 8.26 6.90 4.41 2.73
P12H13 6.64 21.15 21.12 17.04 12.62 18.90 12.55 9.44 4.56 8.53 6.84 5.75 2.73
P12H17 6.99 21.08 21.71 15.83 13.64 19.15 12.76 8.18 5.20 8.99 7.62 2.81 1.78
P12H19 7.17 22.57 23.57 16.83 14.76 21.07 16.70 9.16 6.98 10.97 8.50 5.62 3.14
P12H21 7.63 23.64 24.94 17.54 14.66 21.36 15.04 11.51 7.33 9.06 4.49 2.09
P12H23 8.90 23.93 25.33 20.26 17.71 21.64 18.67 17.11 12.71 13.12 11.50 9.52 3.59
P12H27 11.46 19.94 22.30 21.97 20.16 18.97 20.12 21.65 17.46 15.00 14.79 9.99
P12H29 12.74 16.15 18.29 20.97 18.93 15.62 18.25 19.96 18.80 14.56 17.36 17.87 13.12
P12H30 13.38 18.30 20.24 23.99 22.60 17.53 20.64 22.39 21.59 15.17 19.72 21.36 15.41
P12H31 14.02 16.75 18.68 22.98 22.50 16.42 19.39 21.33 21.90 14.76 19.00 20.85 16.86
P12H32 14.66 16.59 18.58 22.68 23.31 16.34 19.08 20.70 22.93 14.25 17.87 20.75 18.43
P12H33 15.31 15.72 17.60 21.87 23.62 15.54 18.25 20.80 23.76 13.94 17.87 20.64 20.51
P12H34 15.95 14.70 16.53 20.36 22.70 14.81 17.21 19.54 23.04 13.74 17.15 19.62 20.30
P12H35 16.58 13.90 15.45 18.75 21.89 13.61 15.97 17.32 21.59 12.51 15.92 18.28 19.88

m 0.260= pc pe⁄ 1.0=( ) m 0.662= pc pe⁄ 2.0=( )
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Table IX.  Swept-Shock Pressure Distribution Data With Hydrogen Coolant

Distance Pressure, psia
Gauge from No coolant

label slot, in. Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 1 Pos. 2 Pos. 3 Pos. 4
P5P10 0.64 0.39 0.37 0.40 0.53 0.96 0.91 0.93 0.96 1.14 1.12 1.12 1.15
P5P1 0.73 0.97 0.92 1.21 1.23 1.30 1.29 1.38 1.37 1.48 1.49 1.50 1.47
P5P12 1.15 1.20 1.08 1.00 1.24 1.69 1.57 1.50 1.50 1.81 1.69 1.59 1.63
P5P2 1.25 1.34 1.29 1.40 1.48 1.74 1.68 1.69 1.68 1.77 1.67 1.66 1.69
P5P14 1.62 1.51 1.35 1.23 1.36 1.87 1.74 1.66 1.59 1.99 1.87 1.71 1.65
P5P3 1.76 1.54 1.44 1.45 1.52 1.83 1.71 1.67 1.62 1.93 1.79 1.67 1.68
P5P16 2.18 1.82 1.65 1.50 1.56 2.00 1.87 1.78 1.70 2.16 2.04 1.88 1.76
P5P4 2.26 1.65 1.54 1.53 1.55 1.88 1.78 1.68 1.64 2.01 1.90 1.75 1.71
P5P5 2.77 1.72 1.58 1.52 1.55 1.85 1.74 1.64 1.60 2.00 1.89 1.75 1.70
P5P6 3.27 1.77 1.59 1.50 1.51 1.82 1.70 1.59 1.57 2.00 1.88 1.75 1.69
P5P8 4.27 2.16 1.88 1.59 1.62 2.07 1.94 1.83 1.77 2.33 2.20 2.09 1.92
P5P9 4.77 1.72 1.53 1.29 1.24 1.69 1.53 1.47 1.42 1.83 1.75 1.66 1.57
P12P1 5.72 1.84 1.48 1.41 1.39 1.59 1.62 1.58 1.57 1.87 1.78 1.72 1.70
P12P3 7.00 1.62 1.38 1.28 1.37 1.43 1.45 1.46 1.44 1.66 1.62 1.62 1.60
P12P5 8.28 1.82 1.59 1.41 1.47 1.64 1.51 1.51 1.49 1.68 1.66 1.66 1.65
P12P7 9.56 1.83 1.64 1.50 1.47 1.78 1.55 1.44 1.46 1.66 1.56 1.57 1.58
P12P8 10.20 1.86 1.64 1.51 1.44 1.76 1.57 1.42 1.37 1.64 1.50 1.48 1.49
P12P9 10.84 1.77 1.62 1.46 1.37 1.70 1.54 1.36 1.28 1.60 1.45 1.40 1.43
P12P10 11.48 1.81 1.76 1.53 1.39 1.76 1.61 1.43 1.29 1.64 1.50 1.40 1.42
P12P11 12.12 1.83 1.82 1.64 1.42 1.81 1.65 1.51 1.31 1.70 1.59 1.44 1.43
P12P12 12.76 2.00 1.98 1.84 1.61 1.96 1.87 1.74 1.51 1.85 1.80 1.65 1.63
P12P13 13.40 2.02 2.00 1.95 1.67 2.03 2.00 1.83 1.59 1.95 1.88 1.72 1.64
P12P14 14.04 1.61 1.77 1.67 1.45 1.63 1.64 1.54 1.35 1.56 1.61 1.47 1.37
P12P15 14.68 1.49 1.67 1.64 1.42 1.50 1.59 1.51 1.32 1.44 1.55 1.45 1.31
P12P16 15.32 1.52 1.68 1.75 1.52 1.52 1.63 1.58 1.44 1.47 1.59 1.53 1.39
P12P17 15.96 1.42 1.65 1.73 1.58 1.44 1.61 1.61 1.50 1.40 1.56 1.58 1.41

m 0.260= pc pe⁄ 1.0=( ) m 0.662= pc pe⁄ 2.0=( )
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(a)  Incident-shock two-dimensional flow field.

(b)  Swept-shock quasi-conical interaction flow field. (From ref. 5.)

(c)  Interaction flow field structure. Mach 3;α = 20°.

Figure 1.  Oblique shock and turbulent boundary-layer interactions.
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(a)  Schematic of model.

(b)  Photograph of model in tunnel.

(c)  Coolant distribution section.

Figure 2.  Slot cooling nozzles and coolant distribution system. All dimensions are in inches.
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Figure 3.  Model instrumentation layout.
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(a)  Photograph.

(b)  Schematic.

Figure 4.  Film cooling model and incident shock generator installed in Calspan 48-Inch Hypersonic Shock Tunnel.
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(a)  Front view.

Figure 5.  Film-cooling model in swept-shock configuration.
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(b)  Plan view.

Figure 5.  Concluded.
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(a)  Heat flux.

(b)  Pressure.

Figure 6.  Flat-plate reference conditions atM∞ = 6.4,T0 = 2126°R, p0 = 2354 psia, andR∞ = 8 × 106/ft.
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(a)  Heat flux.

(b)  Pressure.

Figure 7.  Baseline configuration with no coolant.
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(a) mc = 0.163 lbm/sec-in2 ( = 0.5).

(b) mc = 0.260 lbm/sec-in2 ( = 1.0).

(c) mc = 0.460 lbm/sec-in2 ( = 1.5).

(d) mc = 0.662 lbm/sec-in2 ( = 2.0).

Figure 8.  Heat-flux distributions of hydrogen film-cooling mass flow effects.
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(a) mc = 0.520 lbm/sec-in2 ( = 0.5).

(b) mc = 0.749 lbm/sec-in2 ( = 1.0).

(c) mc = 1.170 lbm/sec-in2 ( = 1.5).

(d) mc = 1.580 lbm/sec-in2 ( = 2.0).

Figure 9.  Heat-flux distributions of helium film-cooling mass flow effects.
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(a) mc = 1.163 lbm/sec-in2 ( = 0.5).

(b) mc = 0.260 lbm/sec-in2 ( = 1.0).

(c) mc = 0.460 lbm/sec-in2 ( = 1.5).

(d) mc = 0.662 lbm/sec-in2 ( = 2.0).

Figure 10.  Pressure distributions of hydrogen film-cooling mass flow effects.
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(a) mc = 0.520 lbm/sec-in2 ( = 0.5).

(b) mc = 0.749 lbm/sec-in2 ( = 1.0).

(c) mc = 1.170 lbm/sec-in2 ( = 1.5).

(d) mc = 1.580 lbm/sec-in2 ( = 2.0).

Figure 11.  Pressure distributions of helium film-cooling mass flow effects.

0

0.5

1.5

5 10 15 20

1.0

x, distance from slot, in.

P
re

ss
ur

e,
 p

si
a

pc pe⁄

0

0.5

1.5

5 10 15 20

1.0

x, distance from slot, in.

P
re

ss
ur

e,
 p

si
a

pc pe⁄

0

0.5

1.5

5 10 15 20

1.0

x, distance from slot, in.

P
re

ss
ur

e,
 p

si
a

pc pe⁄

0

0.5

1.5

5 10 15 20

1.0

x, distance from slot, in.

P
re

ss
ur

e,
 p

si
a

pc pe⁄



28

(a)  Hydrogen coolant.

(b)  Helium coolant.

(c)  Hydrogen and helium coolants at same mass flow rate.

Figure 12.  Coolant mass flow effects on heat flux.

–2

0

2

4

6

8

10

12

0 5 10 15 20

mc (pc/pe)

0.0 (0.0)

0.163 (0.5)

0.260 (1.0)

0.460 (1.5)

0.662 (2.0)

x, distance from slot, in.

H
ea

t f
lu

x,
 B

tu
/ft

2 -s
ec

–2

0

2

4

6

8

10

12

0 5 10 15 20

mc (pc/pe)

0.0 (0.0)

0.520 (0.5)

0.749 (1.0)

1.170 (1.5)

1.580 (2.0)

x, distance from slot, in.

H
ea

t f
lu

x,
 B

tu
/ft

2 -s
ec

–2

0

2

4

0 5 10 15 20

x, distance from slot, in.

H
ea

t f
lu

x,
 B

tu
/ft

2 -s
ec

Helium (interpolated to mc = 0.662, pc/pe = 0.81)

Hydrogen (mc = 0.662, pc/pe = 2.0)



29

(a)  Basic correlation.

(b)  Improved correlation.

Figure 13.  Film-cooling correlations.
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(a)  2.5° incident shock.

(b)  5.0° incident shock.

(c)  7.5° incident shock.

Figure 14.  Incident-shock heat-flux distributions with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 19.8× 106.
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(a)  2.5° turning angle shock.

(b)  5.0° turning angle shock.

(c)  7.5° turning angle shock.

Figure 15.  Incident-shock strength pressure distributions with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 19.8× 106.
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(a)  2.5° turning angle shock.

(b)  5.0° turning angle shock.

Figure 16.  Incident-shock heat-flux distributions with hydrogen coolant at mc = 0.260 ( = 1.0) and
R= 11.75× 106.
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(a)  2.5° turning angle shock.

(b)  5.0° turning angle shock.

Figure 17.  Incident-shock strength pressure distributions with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 11.75× 106.
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(a)  Heat flux.

(b)  Pressure.

Figure 18.  Comparison of distributions for incident shock with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 19.8× 106.
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(a)  2.5° turning angle shock.

(b)  5.0° turning angle shock.

Figure 19.  Comparison of heat-flux distributions with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 11.75× 106 and  19.8× 106.
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(a)  2.5° turning angle shock.

(b)  5.0° turning angle shock.

Figure 20.  Comparison of pressure distribution data with hydrogen coolant atmc = 0.260 ( = 1.0) and
R= 11.75× 106 and  19.8× 106.
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(a)  Schlieren photograph.

(b)  Schematic.

Figure 21.  Flow-field visualization for 5.0° incident shock withR∞ = 11.75× 106 and hydrogen coolant at = 1.0.
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 22.  Heat-flux distribution for 5° swept shock with no coolant.
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 23.  Pressure distribution for 5° swept shock with no coolant. (See fig. 5 for shock-instrumentation intersections.)
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 24.  Heat-flux distribution for 5° swept shock with hydrogen coolant atmc = 0.260 ( = 1.0).
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 25.  Pressure distribution for 5° swept shock with hydrogen coolant atmc = 0.260 ( = 1.0). (See fig. 5 for
shock-instrumentation intersections.)
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 26.  Heat-flux distribution for 5° swept shock with hydrogen coolant atmc = 0.662 ( = 2.0).
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(a)  Position 1 (y = −0.424 in.).

(b)  Position 2 (y = 0.0 in.).

(c)  Position 3 (y = 0.424 in.).

(d)  Position 4 (y = 0.848 in.).

Figure 27.  Pressure distribution for 5° swept shock with hydrogen coolant atmc = 0.660 ( = 2.0). (See fig. 5 for
shock-instrumentation intersections.)
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(a)  Heat flux.

(b)  Pressure.

Figure 28.  Composite of heat-flux and pressure coincident data at equivalent shock location.y = 0.0 in.
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